

Scaling up ML for Autonomy

Adrien Gaidon (twitter: @adnothing)

Head of Machine Learning Research Toyota Research Institute (TRI), CA, USA Collaborators ML-Research team (V. Guizilini, Jie Li, R. Ambrus, W. Kehl, *et al*) ML-Engineering team (S. Pillai, A. Raventos, A. Bhargava, KH. Lee, *et al*) Wolfram Burgard Stanford (SVL, MRL, ASL)

1.35 MILLION

ROAD TRAFFIC DEATHS PER YEAR

World Health Organization: Global status report on road safety 2018

Planet © youtu.be/ZqjKDpbtVn0

TOYOTA 100M Cars, 95% Parked

~10s PB

AMOUNT OF DATA PER DAY

THE SWE

FROGRAN EVERYTHING

MAPS ?

THE SWE

FROGRAN EVERYTHING

MAPS ?

THE SCIENTIST

© 2020 Toyota Research Institute. Public.

	Everything	Everything
/	PROGRAM	LABEL
	THE SWE	THE MLE

MAPS ?

LABELS CLABELS EVERYWHERE

LABELS ?

© 2020 Toyota Research Institute. Public.

	THE SWE	THE MLE	TRI	THE SCIENTIST
/	PROGRAM	LABEL	LEARN	LEARN
	EVERYTHING	EVERYTHING	FROM EVERYONE	EVERYTHING
	MAPS ?	LABELS ?	STRUCTURE ?	5 171 2
		ONE DOES NOT SIMPLY LABEL ALL THE DATA		

© 2020 Toyota Research Institute. Public.

TOYOTA RESEARCH INSTITUTE

Behavior: leverage large scale Demonstrations

Exploring the Limitations of Behavior Cloning for Autonomous Driving, ICCV'19 (oral)

Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction, **RA-L & ICRA'20** It Is Not the Journey but the Destination: Endpoint Conditioned Trajectory Prediction, arXiv:2004.02025 Reinforcement Learning based Control of Imitative Policies for Near-Accident Driving, coming soon Risk-Sensitive Sequential Action Control with Multi-Modal Human Trajectory Forecasting [...], coming soon Driving Through Ghosts: Behavioral Cloning with False Positives, coming soon

Supervised Learning: efficiently use available Labels

ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape, **CVPR'19** Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss, **NeurIPS'19** Learning to Fuse Things and Stuff, arXiv:1812.01192

Spatio-Temporal Graph for Video Captioning with Knowledge Distillation, CVPR'20

Real-Time Panoptic Segmentation from Dense Detections, CVPR'20 (oral) Hierarchical Lovász Embeddings for Proposal-free Panoptic Segmentation, coming soon Unsupervised Estimation of Segmentation Difficulty, coming soon

Geometry: Self / Semi-Supervised Pseudo-LiDAR and SfM

SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation, ICRA'19 Robust Semi-Supervised Monocular Depth Estimation with Reprojected Distances, CoRL'19 Two Stream Networks for Self-Supervised Ego-Motion Estimation, CoRL'19 Semantically-Guided Representation Learning for Self-Supervised Monocular Depth, ICLR'20 Neural Outlier Rejection for Self-Supervised Keypoint Learning, ICLR'20 Self-Supervised 3D Keypoint Learning for Ego-motion Estimation, arxiv:1912.03426

3D Packing for Self-Supervised Monocular Depth Estimation, CVPR'20 (oral)

Self-Supervised Neural Camera Models, coming soon

Simulation: Domain Adaptation, Differentiable Rendering, RL

SPIGAN: Privileged Adversarial Learning from Simulation, ICLR'19 DeceptionNet: Network-Driven Domain Randomization, ICCV'19 Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models, IJCV'20 Autolabeling 3D Objects with Differentiable Rendering of SDF Shape Priors, CVPR'20 (oral) Self-Supervised Differentiable Rendering for Monocular 3D Object Detection, coming soon Behaviorally Diverse Traffic Simulation via Reinforcement Learning, coming soon

Discovering Avoidable Planner Failures [...] in Behaviorally Diverse Simulation, coming soon

ML Publications History (cumulative)

Quarter

Upcoming workshops co-organized by TRI ICML: AI for Autonomous Driving (AIAD)

https://sites.google.com/view/aiad2020

ECCV: Perception for Autonomous Driving (PAD)

https://sites.google.com/view/pad2020

Upcoming TRI Dataset Releases

STIP: Stanford-TRI Intent Prediction

http://stip.stanford.edu/

DDAD: Dense Depth for Autonomous Driving

https://github.com/TRI-ML/DDAD

Scaling up ML for Autonomy

Behavior Cloning and its Limitations

Exploring the Limitations of Behavior Cloning for Autonomous Driving, Codevilla et al, ICCV'19 (oral)

Real-time Panoptic Segmentation

Self-Supervised Pseudo-Lidar Networks

Auto-labeling via Differentiable Rendering

Modernized: deeper ResNet, ImageNet, Data++

Training conditions								New town & weather					
Task	CIL[10]	CIRL[26]	CAL[36]	MT[25]	CILR	CILRS	CIL[10]	CIRL[26]	CAL[36]	MT[25]	CILR	CILRS	
Straight	98	98	100	96	94	96	80	98	94	96	92	96	
One Turn	89	97	97	87	92	92	48	80	72	82	92	92	
Navigation	86	93	92	81	88	95	44	68	68	78	88	92	
Nav. Dynamic	83	82	83	81	85	92	42	62	64	62	82	90	

Table 1. Comparison with the state of the art on the original CARLA benchmark. The "CILRS" version corresponds to our CIL-based ResNet using the speed prediction branch, whereas "CILR" is without this speed prediction. These two models and CIL are the only ones that do not use any extra supervision or online interaction with the environment during training. The table reports the percentage of successfully completed episodes in each condition, selecting the best seed out of five runs.

Training conditions							New Town & Weather				
Task	CIL[10]	CAL[36]	MT[25]	CILR	CILRS	CIL[10]	CAL[36]	MT[25]	CILR	CILRS	
Empty	79 ± 1	81 ± 1	84 ± 1	92 ± 1	97 ± 2	24 ± 1	25 ± 3	57 ± 0	66 ± 2	90 ± 2	
Regular	60 ± 1	73 ± 2	54 ± 2	72 ± 5	83 ± 0	13 ± 2	14 ± 2	32 ± 2	54 ± 2	56 ± 2	
Dense	21 ± 2	42 ± 3	13 ± 4	28 ± 1	42 ± 2	2 ± 0	10 ± 0	14 ± 2	13 ± 4	24 ± 8	

Table 2. Results on our NoCrash benchmark. Mean and standard deviation on three runs, as CARLA 0.8.4 has significant non-determinism.

Motivation

Trillion miles driven yearly - Requires expensive data annotation

Figure 6. Cause of episode termination on *NoCrash* for two CILRS models (trained on 10 hours with ImageNet initialization) with identical parameters but different random seeds. The episodes were ran under "New Weather & Town" conditions of the "Dense Traffic" task.

Figure 3. Due to biases in the data, the results may get either saturated or worse with increasing amounts of training data.

Figure 4. The percentage of episodes that failed due to the inertia problem. We can see that by increasing the amount of data, this bias may further degrade the generalization capabilities of the models.

Figure 12. Ablative analysis between different architectures. The eight convolutions architecture, "8conv", proposed by Codevilla [10] obtained poor results on the more complex CARLA100 benchmark. ResNet based deeper architectures, "res18" and "res34", were able to improve the results. However, when testing ResNet 50 we notice a significant drop in the quality of the results.

	Task	Variance
CILRS	Empty Regular Dense	$23\% \\ 26\% \\ 42\%$
CILRS (ImageNet)	Empty Regular Dense	$4\% \\ 12\% \\ 38\%$

Table 3. Estimated variance of the success rate of CILRS on *NoCrash* computed by training 12 times the same model with different random seeds. The variance is reduced by fixing part of the initial weights with ImageNet pre-training.

Scaling up ML for Autonomy

Behavior Cloning and its Limitations

Exploring the Limitations of Behavior Cloning for Autonomous Driving, Codevilla et al, ICCV'19 (oral)

Real-time Panoptic Segmentation

Self-Supervised Pseudo-Lidar Networks

Auto-labeling via Differentiable Rendering

Scaling up ML for Autonomy

Behavior Cloning and its Limitations Real-time Panoptic Segmentation

Real-Time Panoptic Segmentation from Dense Detections, R. Hou*, J. Li*, A. Bhargava, A. Raventos et al, **CVPR'20 (oral)**

Self-Supervised Pseudo-Lidar Networks

Auto-labeling via Differentiable Rendering

 $IoU(\mathcal{B}, \mathcal{B}_{query})$

Parameter-free mask construction through bounding box self-attention

Mask Assignment with \hat{P}_{loc}

Dense Bounding Box Querying

Panoptic Segmentation (\mathcal{P})

Mask Refinement with \hat{P}_{sem}

Mask Assignment with \hat{P}_{loc}

Dense Bounding Box Querying

Method	Backbone	PQ	PQ^{th}	$ PQ^{st}$	mIoU	AP	GPU	Inference Time		
Two-Stage										
TASCNet [15]	ResNet-50-FPN	55.9	50.5	59.8	-	-	V100	160ms		
AUNet[16]	ResNet-50-FPN	56.4	52.7	59.0	73.6	33.6	-	-		
Panoptic-FPN [13]	ResNet-50-FPN	57.7	51.6	62.2	75.0	32.0	-	-		
AdaptIS [†] [30]	ResNet-50	59.0	<u>55.8</u>	61.3	75.3	32.3	-	-		
UPSNet [36]	ResNet-50-FPN	59.3	54.6	62.7	75.2	33.3	V100	140ms*		
Seamless Panoptic [28]	ResNet-50-FPN	<u>60.2</u>	55.6	<u>63.6</u>	74.9	33.3	V100	150ms^*		
			Single-S	Stage						
DeeperLab [38]	Wider MNV2	52.3	-	-	-	-	V100	251ms		
FPSNet [7]	ResNet-50-FPN	55.1	48.3	60.1	-	-	TITAN RTX	114ms		
SSAP [8]	ResNet-50	56.6	49.2	-	-	31.5	1080Ti	>260ms		
DeeperLab [38]	Xception-71	56.5	-	-	-	-	V100	312ms		
Ours	ResNet-50-FPN	58.8	52.1	<u>63.7</u>	<u>77.0</u>	29.8	V100	<u>99</u> ms		

Cityscapes (val)

COCO (val)

Method Backbone		PQ	PQ^{th}	$ PQ^{st}$	Inf. Time				
Two-Stage									
Panoptic-FPN [13] ResNet-50-FPN 33.3 45.9 28.7 -									
AdaptIS [†] [30]	[30] ResNet-50		40.3	29.3	-				
AUNet [16]	ResNet-50-FPN	39.6	49.1	25.2	-				
UPSNet [36] ResNet-50-FPN		42.5	48.5	<u>33.4</u>	110ms*				
	Single-S	tage							
DeeperLab [38]	Xcep-71	33.8	-	-	94ms				
SSAP [8]	ResNet-50	36.5	-	-	-				
Ours ResNet-50-FPN		37.1	41.0	31.3	<u>63</u> ms				

Supervision: Weak = 95% Strong

Two towers	Levelness	Mask loss	PQ	PQ^{th}	PQ^{st}				
Fully Supervised									
			56.8	48.1	63.1				
\checkmark			57.1	47.8	63.8				
\checkmark	\checkmark		58.1	50.4	63.7				
\checkmark	\checkmark	\checkmark	58.8	52.1	63.7				
Weakly Supervised (No mask label)									
\checkmark	\checkmark		55.7	45.2	63.3				

Scaling up ML for Autonomy

Behavior Cloning and its Limitations Real-time Panoptic Segmentation

Real-Time Panoptic Segmentation from Dense Detections, R. Hou*, J. Li*, A. Bhargava, A. Raventos et al, **CVPR'20 (oral)**

Self-Supervised Pseudo-Lidar Networks

Auto-labeling via Differentiable Rendering

Scaling up ML for Autonomy Behavior Cloning and its Limitations Real-time Panoptic Segmentation

Self-Supervised Pseudo-Lidar Networks

3D Packing for Self-Supervised Monocular Depth Estimation V. Guizilini, R. Ambrus, S. Pillai et al, **CVPR'20 (oral)**

Auto-labeling via Differentiable Rendering

Supervised Learning

OYOTA

RESEARCH INSTITUTE

Self-Supervised Learning

Self-Supervised Structure-from-Motion (SfM)

Self-Supervised Structure-from-Motion (SfM)

No LIDAR information is used at training or test time
 Samples shown were not seen during training

PackNet: Pack it, don't pool it

	Layer Description	K	Output Tensor Dim.							
#0	Input RGB image		3×H×W							
	Encoding Layers									
#1	Conv2d	5	64×H×W							
#2	$Conv2d \rightarrow Packing$	7	$64 \times H/2 \times W/2$							
#3	ResidualBlock (x2) \rightarrow Packing	3	64×H/4×W/4							
#4	ResidualBlock (x2) \rightarrow Packing	3	128×H/8×W/8							
#5	ResidualBlock (x3) \rightarrow Packing	3	256×H/16×W/16							
#6	ResidualBlock (x3) \rightarrow Packing	3	512×H/32×W/32							
	Decoding Layers									
#7	Unpacking (#6) \rightarrow Conv2d (\oplus #5)	3	512×H/16×W/16							
#8	Unpacking (#7) \rightarrow Conv2d (\oplus #4)	3	256×H/8×W/8							
#9	InvDepth (#8)	3	$1 \times H/8 \times W/8$							
#10	Unpacking (#8) \rightarrow Conv2d (\oplus #3 \oplus Upsample(#9))	3	128×H/4×W/4							
#11	InvDepth (#10)	3	$1 \times H/4 \times W/4$							
#12	Unpacking (#10) \rightarrow Conv2d (\oplus #2 \oplus Upsample(#11))	3	64×H/2×W/2							
#13	InvDepth (#12)	3	$1 \times H/2 \times W/2$							
#14	Unpacking (#12) \rightarrow Conv2d (\oplus #1 \oplus Upsample(#13))	3	64×H×W							
#15	InvDepth (#14)	3	$1 \times H \times W$							

(a) Input Image

(b) Max Pooling + (c) Pack + Unpack Bilinear Upsample

Experimental Results (KITTI)

	Method	Supervision	Resolution	Dataset	Abs Rel	Sq Rel	RMSE	RMSE _{log}	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
	SfMLearner [46]	М	416 x 128	CS + K	0.198	1.836	6.565	0.275	0.718	0.901	0.960
	Klodt et al. [21]	Μ	416 x 128	CS + K	0.165	1.340	5.764	-	0.784	0.927	0.970
	Vid2Depth [28]	Μ	416 x 128	CS + K	0.159	1.231	5.912	0.243	0.784	0.923	0.970
	DF-Net [47]	M	576 x 160	CS + K	0.146	1.182	5.215	0.213	0.818	0.943	0.978
	Struct2Depth [†] [3]	Μ	416 x 128	K	0.141	1.026	5.291	0.215	0.8160	0.945	0.979
	Monodepth2 [15]	M	640 x 192	K	0.132	1.044	5.142	0.210	0.845	0.948	0.977
_	Monodepth2 [‡] [15]	Μ	640 x 192	K	0.115	0.903	4.863	0.193	0.877	0.959	0.981
[6]	Monodepth2 [‡] [15]	Μ	1024 x 320	K	0.115	0.882	4.701	0.190	0.879	0.961	0.982
ina	PackNet-SfM	М	640 x 192	K	0.111	0.785	4.601	0.189	0.878	0.960	0.982
rig	PackNet-SfM	M+v	640 x 192	K	0.111	0.829	4.788	0.199	0.864	0.954	0.980
0	PackNet-SfM	M	640 x 192	CS + K	0.108	0.727	4.426	0.184	0.885	0.963	0.983
	PackNet-SfM	M+v	640 x 192	CS + K	0.108	0.803	4.642	0.195	0.875	0.958	0.980
	PackNet-SfM	М	1280 x 384	K	0.107	0.802	4.538	0.186	0.889	0.962	0.981
	PackNet-SfM	M+v	1280 x 384	K	0.107	0.803	4.566	0.197	0.876	0.957	0.979
	PackNet-SfM	M	1280 x 384	CS + K	0.104	0.758	4.386	0.182	0.895	0.964	0.982
_	PackNet-SfM	M+v	1280 x 384	CS + K	0.103	0.796	4.404	0.189	0.881	0.959	0.980
	SfMLeaner [46]	M	416 x 128	CS + K	0.176	1.532	6.129	0.244	0.758	0.921	0.971
	Vid2Depth [28]	M	416 x 128	CS + K	0.134	0.983	5.501	0.203	0.827	0.944	0.981
	GeoNet [42]	Μ	416 x 128	CS + K	0.132	0.994	5.240	0.193	0.883	0.953	0.985
[9	DDVO [38]	Μ	416 x 128	CS + K	0.126	0.866	4.932	0.185	0.851	0.958	0.986
3	EPC++ [27]	M	640 x 192	K	0.120	0.789	4.755	0.177	0.856	0.961	0.987
ved	Monodepth2 [‡] [15]	Μ	640 x 192	K	0.090	0.545	3.942	0.137	0.914	0.983	0.995
prov	Kuznietsov et al. [‡] [23]	Sup.	621 x 187	K	0.089	0.478	3.610	0.138	0.906	0.980	0.995
Im	DORN [‡] [10]	Sup.	513 x 385	K	0.072	0.307	2.727	0.120	0.932	0.984	0.995
	PackNet-SfM	M	640 x 192	K	0.078	0.420	3.485	0.121	0.931	0.986	0.996
	PackNet-SfM	M	1280 x 384	CS + K	0.071	0.359	3.153	0.109	0.944	0.990	0.997
	PackNet-SfM	M+v	1280 x 384	CS + K	0.075	0.384	3.293	0.114	0.938	0.984	0.995

Experimental Results (KITTI)

Experimental Results

Better use of network capacity...

Depth Network	Abs Rel	Sq Rel	RMSE	RMSE _{log}	$\delta < 1.25$
ResNet18	0.133	1.023	5.123	0.211	0.845
ResNet18 [‡]	0.120	0.896	4.869	0.198	0.868
ResNet50	0.127	0.977	5.023	0.205	0.856
ResNet50 [‡]	0.117	0.900	4.826	0.196	0.873
PackNet18	0.118	0.802	4.656	0.194	0.868
PackNet50	0.114	0.818	4.621	0.190	0.875
PackNet-SfM (w/o pack/unpack)	0.122	0.880	4.816	0.198	0.864
PackNet-SfM (w/o 3D convs.)	0.118	0.922	4.831	0.195	0.872
PackNet-SfM	0.111	0.785	4.601	0.189	0.878

ΟΥΟΤΑ

RESEARCH INSTITUTE

And better generalization! (KITTI \rightarrow NuScenes)

Method	Abs Rel	Sq Rel	RMSE	RMSE_{\log}	$\delta < 1.25$
ResNet18	0.218	2.053	8.154	0.355	0.650
ResNet18 [‡]	0.212	1.918	7.958	0.323	0.674
ResNet50	0.216	2.165	8.477	0.371	0.637
ResNet50 [‡]	0.210	2.017	8.111	0.328	0.697
PackNet-SfM	0.187	1.852	7.636	0.289	0.742

Experimental Results

DDAD: Dense Depth for Autonomous Driving <u>https://github.com/TRI-ML/DDAD</u>

Frontiers of Monocular 3D Perception @CVPR'20 https://sites.google.com/view/mono3d-workshop

Scaling up ML for Autonomy Behavior Cloning and its Limitations Real-time Panoptic Segmentation

Self-Supervised Pseudo-Lidar Networks

3D Packing for Self-Supervised Monocular Depth Estimation V. Guizilini, R. Ambrus, S. Pillai et al, **CVPR'20 (oral)**

Auto-labeling via Differentiable Rendering

Scaling up ML for Autonomy Behavior Cloning and its Limitations Real-time Panoptic Segmentation Self-Supervised Pseudo-Lidar Networks Auto-labeling via Differentiable Rendering

Autolabeling 3D Objects with Differentiable Rendering of SDF Shape Priors, S. Zakharov, W. Kehl* et al, **CVPR'20 (oral)**

Auto-labeling in 3D

Input: image, point cloud, 2d bounding boxes

Output: 3d boxes with pose + shape

Goal: use auto-labels instead of manual ones

Shape Representation

Pose/Shape Estimator

Differentiable Renderer

Coordinate Shape Space (CSS): DeepSDF + NOCS

RESEARCH INSTITUTE

From SDF to Coordinates?

Zero-Isosurface Projection

Zero-Isosurface Projection

1. Project the grid points to the surface using the *SDF values* and the *analytically estimated normals*:

 $m{p} = m{grid} - rac{\partial f(m{grid})}{\partial m{grid}} f(m{grid})$

2. Mask the points that are far from the surface:

 $p_{masked} = p$, where |f(grid)| < 0.1

Auto-labeling Pipeline

Auto-labeling Pipeline

CSS Network (R18-based):

U, V, W: Normalized Object Coordinates (NOCS) for each pixel
M: Object mask
z: Latent shape vector

Figure 2: CSS representation. Top: Car models from the PD dataset [1]. Bottom: The same cars in the CSS representation: decoded shape vector z colored with NOCS.

Pose estimator uses either: PnP (2D-based) Kabsch / Procrustes (3D-based)

Auto-labeling Pipeline

Training: Domain Adaptation

Parallel Domain (Training data)

KITTI (Testing data)

Training: Domain Randomization

2D:

- Transforms: Ο
 - Random rotation
 - Random horizontal flip
 - Random resized crop
- Noise: \bigcirc
 - Color jitter: brightness, contrast, saturation, hue

RGB

Normals

3D:

- Phong Lighting: Ο
 - Random ambient, diffuse and specular lights from pre-computed normals

Color jitter

+Random transforms

Curriculum Learning

Automatic annotation pipeline

CSS Network prediction quality of our network over consecutive loops for the same patch

Qualitative Results

3D alignment

Quantitative Results

	2D AP @ 0.5/0.7		3D AP @ 0.5/0.7		BEV AP @ 0.5/0.7	
Method	Easy	Moderate	Easy	Moderate	Easy	Moderate
PointPillars [20] (Original Labels)	- / -	- / -	94.8 / 81.1	92.4 / 68.2	95.1 / 92.1	95.1 / 84.7
PointPillars [20] (Autolabels)	- / -	- / -	90.7 / 22.4	71.1 / 13.3	94.9 / 81.0	88.5 / 59.8
MonoDIS [35] (Original Labels)	96.1 / 95.5	92.6 / 86.5	45.7 / 11.0	32.9 / 7.1	52.4 / 17.7	37.2 / 11.9
MonoDIS [35] (Autolabels)	96.7 / 85.8	86.2 / 67.6	32.9 / 1.23	22.1 / 0.54	51.1 / 15.7	34.5 / 10.52

Table 2: We compare the performance of 3D object detectors trained on true KITTI labels vs. our autolabels. On the BEV metric, **the detectors trained on autolabels alone achieve results equal to the current state-of-the-art**. On the 3D AP metric, both autolabel trained detectors achieve competitive results at the IoU 0.5 threshold.

Scaling up ML for Autonomy Behavior Cloning and its Limitations Real-time Panoptic Segmentation Self-Supervised Pseudo-Lidar Networks Auto-labeling via Differentiable Rendering

Autolabeling 3D Objects with Differentiable Rendering of SDF Shape Priors, S. Zakharov, W. Kehl* et al, **CVPR'20 (oral)**

	THE SWE	THE MLE	TRI	THE SCIENTIST
/	PROGRAM	LABEL	LEARN	LEARN
	EVERYTHING	Everything	from everyone	EVERYTHING
	MAPS ?	LABELS ?	STRUCTURE ?	sin?
		ONE DOES NOT SIMPLY LABEL ALL THE DATA		

© 2020 Toyota Research Institute. Public.

TOYOTA RESEARCH INSTITUTE

Behavior: leverage large scale Demonstrations

Exploring the Limitations of Behavior Cloning for Autonomous Driving, ICCV'19 (oral)

Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction, **RA-L & ICRA'20** It Is Not the Journey but the Destination: Endpoint Conditioned Trajectory Prediction, arXiv:2004.02025 Reinforcement Learning based Control of Imitative Policies for Near-Accident Driving, coming soon Risk-Sensitive Sequential Action Control with Multi-Modal Human Trajectory Forecasting [...], coming soon Driving Through Ghosts: Behavioral Cloning with False Positives, coming soon

Supervised Learning: efficiently use available Labels

ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape, **CVPR'19** Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss, **NeurIPS'19** Learning to Fuse Things and Stuff, arXiv:1812.01192

Spatio-Temporal Graph for Video Captioning with Knowledge Distillation, CVPR'20

Real-Time Panoptic Segmentation from Dense Detections, CVPR'20 (oral) Hierarchical Lovász Embeddings for Proposal-free Panoptic Segmentation, coming soon Unsupervised Estimation of Segmentation Difficulty, coming soon

Geometry: Self / Semi-Supervised Pseudo-LiDAR and SfM

SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation, ICRA'19 Robust Semi-Supervised Monocular Depth Estimation with Reprojected Distances, CoRL'19 Two Stream Networks for Self-Supervised Ego-Motion Estimation, CoRL'19 Semantically-Guided Representation Learning for Self-Supervised Monocular Depth, ICLR'20 Neural Outlier Rejection for Self-Supervised Keypoint Learning, ICLR'20 Self-Supervised 3D Keypoint Learning for Ego-motion Estimation, arxiv:1912.03426

3D Packing for Self-Supervised Monocular Depth Estimation, CVPR'20 (oral)

Self-Supervised Neural Camera Models, coming soon

Simulation: Domain Adaptation, Differentiable Rendering, RL

SPIGAN: Privileged Adversarial Learning from Simulation, ICLR'19

DeceptionNet: Network-Driven Domain Randomization, ICCV'19

Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models, IJCV'20

Autolabeling 3D Objects with Differentiable Rendering of SDF Shape Priors, CVPR'20 (oral)

Self-Supervised Differentiable Rendering for Monocular 3D Object Detection, coming soon Behaviorally Diverse Traffic Simulation via Reinforcement Learning, coming soon Discovering Avoidable Planner Failures [...] in Behaviorally Diverse Simulation, coming soon

ML Publications History (cumulative)

Quarter

Upcoming workshops co-organized by TRI

ICML: AI for Autonomous Driving (AIAD)

https://sites.google.com/view/aiad2020

ECCV: Perception for Autonomous Driving (PAD)

https://sites.google.com/view/pad2020

Upcoming TRI Dataset Releases

STIP: Stanford-TRI Intent Prediction

http://stip.stanford.edu/

DDAD: Dense Depth for Autonomous Driving

https://github.com/TRI-ML/DDAD

Scaling up ML for Autonomy

Behavior Cloning and its Limitations

More data & params \rightarrow SotA policy but...

Real-time Panoptic from Bounding Boxes

SotA, 4x faster, weak sup. = 95% strong

Self-Supervised Pseudo-Lidar Networks

Self sup > sup! Don't pool it: Pack it.

Auto-labeling via Differentiable Rendering

Diff. shape priors + geometry ~ labels

