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Abstract— Modeling the stochastic behavior of interacting
agents is key for safe motion planning. In this paper, we
study the interaction of risk-aware agents in a game-theoretical
framework. Under the entropic risk measure, we derive an
iterative algorithm for approximating the intractable feedback
Nash equilibria of a risk-sensitive dynamic game. We use an
iteratively linearized approximation of the system dynamics and
a quadratic approximation of the cost function in solving a
backward recursion for finding feedback Nash equilibria. In
this respect, the algorithm shares a similar structure with DDP
and iLQR methods. We conduct experiments in a set of chal-
lenging scenarios such as roundabouts. Compared to ignoring
the game interaction or the risk sensitivity, we show that our
risk-sensitive game-theoretic framework leads to more time-
efficient, intuitive, and safe behaviors when facing underlying
risks and uncertainty.

I. INTRODUCTION

To act safely in a dynamic and uncertain environment,
robots must (i) consider the risk associated with their actions,
and (ii) account for feedback interactions with other risk-
sensitive agents. Existing work typically ignores one or both
of these two elements. To address this problem, we present
iLEQGames, an algorithm for computing approximate feed-
back Nash equilibria for interacting risk-aware agents.

Uncertainties are intrinsic to robots; robots may be subject
to disturbances, modeling ambiguity, and uncertain localiza-
tion. To take into account such uncertainties, several stochas-
tic formulations of trajectory planning methods have been
proposed [1]–[5], where an expected performance metric
is optimized subject to a set of potentially probabilistic
constraints. However, these methods are not sufficient when
one needs to account for risks that are associated with an
uncertain environment.

In contrast, risk-sensitivity based planning methods have
proven to be a practical and safe method of capturing uncer-
tainties [6]–[10]. These methods take advantage of a notion
of risk measure to avoid potentially unsafe rare events. In
addition, recent results in inverse reinforcement learning and
human modeling indicate that humans are not risk-neutral,
they tend to be risk-aware in their decision making [11]–[13],
reinforcing the applicability and relevancy of risk measures.
The common risk measures utilized in risk-sensitive planning
are entropic risk and Conditional Value at Risk (CVaR) [14],
[15]. Entropic risk has been widely used in optimal control
due to its simplicity and tractability [16], while recently,
CVaR has been incorporated in trajectory optimization due to
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its interpretability [8]. In risk-aware trajectory optimization,
an agent has an inherent risk tolerance, which determines
how conservatively the agent acts, i.e. how sensitive the
agent is to the underlying risks. For instance, the more
risk-sensitive an agent is, the further the average minimum
distance between the agent and an obstacle may get.

Going beyond obstacle avoidance, in interactive scenar-
ios, such as autonomous driving, robots need to interact
with other intelligent agents such as human drivers or
other robotic cars. Such settings are fundamentally game-
theoretic [17], [18]. In the absence of uncertainties, it was
shown in [19] and [20]–[22] that by treating the interaction
as a game, robots can reason about the impact of their
actions as well as the intentions of other agents. Inspired
by these results, when dealing with uncertainties, assuming
that all agents capture a notion of risk in their planning,
we argue that to generate a more realistic and time efficient
behavior for autonomous agents, it becomes crucial to model
the interaction of risk-sensitive agents. We show that during
interactions, the extent to which agents exhibit risky maneu-
vers is not solely determined by their inherent risk tolerance,
it depends on how risk-sensitive the other agents are too.

In this paper, we model the interaction of risk-aware agents
in a game-theoretical framework. Through different case
studies where uncertainties are involved, we demonstrate that
by being aware of the underlying risk during interactions,
our algorithm leads to safer behaviors at a higher distance
from other agents. Moreover, the proposed approach is
not overly conservative either. By anticipating the feedback
game-theoretic interactions, our algorithm can leverage other
agent’s risk-awareness and plan a time efficient trajectory.

We model the interaction of risk-aware agents via the
equilibrium of a dynamic game between agents, where every
agent minimizes an entropic risk measure of their underlying
cost function. In particular, we study the feedback Nash
equilibrium of a dynamic game between such risk-aware
agents. However, finding the exact Nash equilibria of our
game, an instance of a general-sum dynamic game with
nonlinear cost functions, is in general intractable [23]. By
drawing on results from [24] and [25], we derive an iterative
algorithm for approximating the feedback Nash equilibria
of our risk-sensitive dynamic game. At every iteration, we
use a linearized approximation of the system dynamics and
a quadratic approximation of the cost function in solving a
backward recursion for finding feedback Nash equilibria.

We demonstrate the consequences of our framework in
a set of simulation studies. We compare the performance
of our framework with two baselines: 1) disregarding the
interaction while planning for risk-sensitive agents, and 2)



disregarding the risk-sensitivity while planning for interactive
agents. We showcase that the behaviors that emerge out of
risk-sensitive interactive planning results in higher distance
between agents when facing higher uncertainties. And it is
more time efficient compared with non-game planning.

The organization of this paper is as follows. In Section II,
we review the preliminaries and prior results. We describe
the problem statement in Section III, and discuss our solution
to the problem in Section IV. In Section V, we present the
consequences of our framework via our case studies. Finally,
we conclude the paper in Section VI.

II. PRELIMINARIES

A. Risk-Sensitive Optimal Control
The Linear Exponential Quadratic Gaussian (LEQG) prob-

lem is the most common and well-studied form of risk-
senstive stochastic optimal control problems [16], [26]. Un-
like the Linear Quadratic Gaussian (LQG) formulation which
is risk-neutral, LEQG not only considers the expected cost
but also the higher order moments of uncertainty by using an
entropic objective function. Consider the system with linear
dynamics:

xt+1 = Atxt +Btut + wt, (1)

where xt ∈ X is the system state, ut ∈ U is the control
input, and wt ∼ N (0,Wt) is the system noise. The agent
incurs the following cost during a finite horizon T :

Ψ =

t−1∑
t=0

1

2

(
xTt Qtxt + uTt Rtut

)
+

1

2
xTTQTxT ,

where Qt � 0, and Rt � 0. The exponential risk measure is

J =
1

θ
logE

[
e(θΨ)

]
= Rθ(Ψ),

where θ is the risk-sensitivity parameter. An LEQG problem
is to find the optimal control policy that minimizes J , with
system dynamics (1). To understand how J captures risk, we
use Taylor series expansion of the risk sensitive cost function
and obtain

J = Rθ(Ψ) = E[Ψ] +
θ

2
var[Ψ] + o(θ).

Hence, Rθ(·) is a linear combination of the expectation and
higher order moments of the original random variable. With
θ = 0, J = E[Ψ], and the problem reverts to the LQG
problem. When θ > 0, in addition to the expected cost, the
variance and higher order moments are penalized. Thus, the
resulting policy leads to risk-averse behaviors. Conversely,
risk-seeking behaviors can be achieved with negative θ where
higher variance and other moments are preferred.

The LEQG problem is known to have a closed form solu-
tion using dynamic programming where a modified Riccati
equation is used to obtain the closed form solution in a
recursive fashion [27]. In the LEQG setting, the optimal
feedback control policy is linear in the state, and further,
the value function is quadratic, similar to LQG. However,
the difference is that the feedback policy is dependent on
the distribution of the noise which violates the certainty
equivalence principle [26].

B. Dynamic Games

In this section, we introduce discrete-time infinite dynamic
games, which is important when an agent interacts with
another intelligent agent. Consider a two-player discrete-time
system with dynamics modeled as

xt+1 = ft(xt, u
1
t , u

2
t , wt), (2)

where xt is the state of the system at time step t, u1
t and u2

t

are the control inputs of player 1 and 2 at time t, respectively.
Moreover, wt ∼ N (0,Wt) is the system noise which is
assumed to be normally distributed with covariance matrix
Wt. We assume that agent i has a finite-horizon cost function
of the form

Ψi =

T∑
t=0

(
gix,t(xt) + giu,t(u

1
t , u

2
t )
)
, (3)

where gix,t is state cost and giu,t is control cost. And agent
i’s objective is to minimize the expected cost

J i = E[Ψi].

Preferably, we want to compute feedback policies for the
agents. Let the strategy sets be {Γi, i = 1, 2}, where the
t-th block of Γi is the strategy space for player i at time
step t. We assume a feedback information pattern for all
players, i.e. at each time step, all players have access to the
perfect current state information xt. Under this information
structure, any permissive strategy at time t is a mapping from
X → U . Thus, for any strategy tuple {γi ∈ Γi, i = 1, 2},
where γi = {γit ∈ Γit}t=0,T−1, the control input for agent i
is understood to be uit = γit(xt). We now define the feedback
Nash equilibria of risk-sensitive dynamic games.

Definition 2.1: A pair of feedback policies {γ1∗, γ2∗}
constitutes a Nash equilibrium solution if and only if the
following inequalities are satisfied for all {γi ∈ Γi, i = 1, 2}

J1∗ , J1(γ1∗; γ2∗) ≤ J1(γ1; γ2∗),

J2∗ , J2(γ1∗; γ2∗) ≤ J2(γ1∗; γ2).
In general, a dynamic game could admit multiple Nash

equilibria, The uniqueness of the Nash equilibria is prob-
lem dependent. Moreover, it is generally computationally
intractable [23]. However, under certain assumptions on the
structure of the problem, such as linear (affine) dynamics and
quadratic cost functions, Nash equilibria can be found via a
Riccati-type set of equations as discussed in [24, Chap. 6].

III. PROBLEM STATEMENT

As we discussed in the preliminaries, when facing uncer-
tainties, optimizing the expected cost is often not intuitive
and may incur high risk. In this work, we consider two agents
who are both risk-sensitive. Note that for simplicity, we focus
on the two-player setting; however, the problem formulation
and the proposed solution can be extended to more than
two players. The system dynamics follow the definition in
(2). And the cost function is given as in (3). Assuming that
every agent is risk-sensitive, the corresponding risk-sensitive



cost function of agent i with risk-sensitivity parameter θi is
defined as

J i(x0; θi) = Rθi(Ψ
i) =

1

θi
logE

[
e(θiΨi)

]
. (5)

With the risk sensitive utility, the strategy space and Nash
equilibria strategies are defined accordingly. In the context of
risk-sensitive games, for linear exponential quadratic games,
the solution to feedback Nash equilbria was introduced in
[25]. In this paper, for our risk-sensitive dynamic game, we
leverage the result of [25] and use an iterative approach to
extend the solution to non-linear systems dynamics and cost
functions. The proposed approach iteratively approximates
the original nonlinear problem with linear dynamics and
quadratic costs, and aims to approximate a Nash equilibrium
in the sense of the approximated system.

IV. ITERATIVE LEQ GAME

In this section, we first describe the solution to an extended
set of LEQ games with linear dynamics and affine-quadratic
cost functions. Then, we present our proposed iterative LEQ
game solution for general risk–sensitive games.

A. LEQ game

The solution of risk sensitive discrete-time dynamic games
was first introduced in [25] for systems with linear dynamics
and quadratic costs. First, we extend this result to consider
a more general case with affine-quadratic cost functions. For
linear dynamics, the system dynamics (2) are

xt+1 = Atxt +B1
t u

1
t +B2

t u
2
t + wt, (6)

where At, B
1
t , and B2

t are matrices of appropriate dimen-
sions. We assume that the cost function for agent i is given
in affine-quadratic form as:

Ψi =

T−1∑
t=0

1

2
xTt Q

i
txt + liTt xt +

1

2

∑
j

ujTt Rijt u
j
t

+

1

2
xTTQ

i
TxT + liTT xT ,

(7)

where Qit � 0, Rijt � 0 and lit are matrices of appropriate
dimensions. We assume that every agent optimizes the risk-
sensitive cost (5) with Ψi being defined via (7).

Lemma 4.1: For a two-agent risk-sensitive game, let θ1

and θ2 be the risk-sensitivity parameters for the two agents,
respectively. For every agent i = 1, 2, let P it and αit be
matrices of appropriate dimensions that satisfy the following
sets of linear matrix equations:[

Riit +BiTt Z̃it+1B
i
t

]
P it +BiTt Z̃it+1

∑
j 6=i

BjtP
j
t =

BiTt Z̃it+1At, (8a)[
Riit +BiTt Z̃it+1B

i
t

]
αit +BiTt Z̃it+1

∑
j 6=i

Bjtα
j
t =

BiTt W−1
t (W−1

t − θiZit+1)−1ζit+1, (8b)

where Z̃it , Z
i
t , and ζit are recursively obtained from the

following

Z̃it+1 = Zit+1 + θiZit+1(W−1
t − θiZit+1)−1Zit+1, (9)

Zit = Qit +
∑
j

P jTt R1j
t P

j
t + FTt Z̃

i
t+1Ft, (10)

ζiTt = liTt +
∑
j

αjTt Rijt P
j
t + βTt Z̃

i
t+1Ft+

ζiTt+1(W−1
t − θiZit+1)−1W−1

t Ft,

(11)

where

Ft = At −
∑
j=1,2

BjtP
j
t , βt = −

∑
j=1,2

Bjtα
j
t . (12)

The terminal conditions for Equations (10) and (11) are

ZiT = QiT , ζ
i
T = liT . (13)

Note it is required that

W−1 − θiZit � 0,∀t ∈ T, i = 1, 2 (14)

to avoid “neurotic breakdown”. Because if this condition is
not satisfied, the risk-sensitive cost (5) becomes infinity. See
Appendix I for a more detailed discussion. The following
Corollary is an extension of Corollary 1 in [25]

Corollary 4.1: A two-person linear exponential quadratic
game defined by system dynamics (6), cost function (7) and
risk sensitive cost function (5) admits a unique feedback
Nash equilibrium solution if, and only if, (8) admits unique
solution sets {P i∗t , αi∗t , t ∈ T, i = 1, 2}. Furthermore, the
equilibrium strategies are given by

γi∗t (xt) = −P i∗t xt − αi∗t . (15)
For completeness and clarity, we have provided the outline
of our proof in the Appendix I.

Note that with the risk-sensitivity parameters θ1 = θ2 = 0,
the above equations revert to the case of linear quadratic
games [24, Chap. 6], where both players are considered to
be risk-neutral. Note that with θ1 = θ2 = 0, the Gaussian
covariance matrix Wt does not appear in Lemma 4.1 any-
more. Hence risk-neutral control policy is indifferent to the
level of noise.

B. Iterative LEQ problem

To handle general nonlinear dynamics and cost functions,
we propose an iterative algorithm that proceeds as follows.
We start with a nominal strategy sequence {P it , αit} for every
time step t ∈ T, and every agent i = 1, 2. If a nominal policy
is not available, a trivial initialization could be initializing all
matrices to zeros. Then, at every iteration, a nominal state
trajectory and nominal action trajectories η = {x̄, ū1, ū2}
are obtained from forward simulation of the system dynamics
using the nominal strategy. Let δxt = xt− x̄t, δuit = uit− ūit,
we can then acquire a linear approximation of the dynamics
(2) as

δxt+1 ≈ Atδxt +
∑
i=1,2

Bitδu
i
t, (16)



where At = Dxft(·) and Bit = Dui
t
ft(·) are the Jacobians

of the original nonlinear dynamics function with respect to
xt, and uit, respectively. Furthermore, the cost function (3)
is approximated using quadratic functions:

gix,t(x̄t + δxt) ≈ gix,t(x̄t) +
1

2
δxTt Q

i
tδxt + liTt δxt, (17)

where Qit = Dxtxt
gix,t(·) and lit = Dxt

gix,t(·) are the
Hessian and the gradient of the cost function gix,t(·) with
respect to xt. Note that our formulation only considers
nonlinear costs on state variables, and giu,t(·) is quadratic.
For a more general case, where the cost function is also
nonlinear on control inputs, a similar approximation could
be used to derive the quadratic terms and linear terms in uit.

All the approximations At, Bit, Q
i
t, l

i
t are evaluated at η.

For the linearized system dynamics and quadratized cost
function, we obtain a new LEQ game problem with new
variable sequences δx, δu1, and δu2. These approximations
result in a new game that can be solved using Lemma. 4.1.
Once the approximated game is solved, we obtain a new
sequence of control inputs.

{ūit + δu∗t , t = 0, · · · , T − 1}, (18)

where u∗t is the solution for previous iteration. A new x̄t is
attained from the forward simulation of the original system
dynamics (2) using the newly obtained control inputs. We
repeat the above process until convergence, i.e. the deviation
of the new state trajectory from the state trajectory in the pre-
vious iteration lies within tolerance. In practice, we limit the
maximum number of iterations for real-time implementations
of our algorithm. The outline of our algorithm is summarized
in Algorithm 1.

Algorithm 1 Iterative Linear Exponential Quadratic Game

1: Inputs
2: system dynamics (2), risk sensitive utility (5)
3: risk sensitive parameters θ1, θ2

4: Initialization
5: initialize the control policy using P it = αit = 0, ∀i
6: forward simulation and obtain (x̄0, x̄1, x̄2, · · · , x̄T ),

(ū1
0, · · · , ū1

T−1), and (ū2
0, · · · , ū2

T−1)
7: while not converged do
8: linear approximation of (2)
9: quadratic approximation of (5)

10: solve the backward recursion with (8-13)
11: forward simulation and obtain the new trajectories
12: end while
13: return policy P it , αit

Remark 1: Applying uit directly from (18) may lead to
non-convergence since the resulting trajectory could deviate
from the original non-linear systems which we approximated
around ηt. As in other iterative optimal control problems
[28], [29], we augment our algorithm with a line search.
At each iteration, rather than (18), we apply the following
control input

ūit − P it δxt − εαit, (19)

accelerates

decelerates

Goal Start P2P1

Fig. 1: Illustration of the cross interaction scenario. Left:
One possible realization of the interaction at the intersection.
Right: A visualization of the uncertainty of P1.

where ε is the step size for improving our control strategy.
Initially, we set ε = 1. If the new trajectory deviates too
far from the nominal trajectory, we reject the trajectory and
decrease ε by half.

Remark 2: As mentioned in Lemma 4.1, there is a
critical value θcrit in the case of a positive risk-sensitivity
parameter. The intuition is that, if a player is too risk-averse,
then, due to the rapid growth of the exponential function,
the agent’s risk-sensitive cost (5) under uncertainty may
approach infinity with any possible choice of policy. In our
work, we implement backtracking on positive risk-sensitivity
parameters. An initial risk-sensitivity parameter is used in the
backward computation. At every stage, (14) is asserted. If the
criteria is violated, then we decrease θ by half.

V. CASE STUDIES

In this section, we demonstrate the performance of our
proposed iterative algorithm for solving risk-sensitive dy-
namic games in different systems and simulation environ-
ments. We first show that our algorithm generates intuitive,
interpretable and safe trajectories. Then, to highlight the im-
portance of capturing the interactions via games, we compare
our framework with a baseline where the interaction of risk-
sensitive agents is disregarded, and every risk-aware agent
treats the other agent as a nonreactive obstacle. Moreover, we
compare the performance of our algorithm with that of in-
teraction between risk-neutral agents to illustrate the impact
of risk-awareness. We consider the following scenarios in
autonomous driving: a cross intersection, an onramp merging
maneuver, and entering a roundabout in CARLA simulator
[30]. Throughout this section, we use P1 and P2 to denote
the two agents involved in the scenario of focus.

A. Cross intersection

Consider an intersection scenario similar to Fig. 1. Two
risk-sensitive players start from their starting positions and
try to advance towards their goal positions at a constant
speed. The configuration is selected such that without colli-
sion avoidance, the two players will cross each other at the
center point. The dynamics of the two agents is modeled as
two extended unicycles

x = [px1 , p
y
1, v1, θ1, p

x
2 , p

y
2, v2, θ2], ui = [ai, θ̇i], i = 1, 2.



Fig. 2: Heatmap of the percentage of simulations where
player 1 crossed the interaction before player 2.

The state vector x includes the position of the two agents
px, py , their speeds v1, v2, and their headings θ1, θ2. For
every agent i, the control inputs are acceleration ai, and yaw
rate θ̇i. We use gi(x, u) to denote the cost function of each
player and separate it into tracking cost, control cost, and
collision cost

gi(x, u) = gitrack(x) + gictrl(u) + gicoll(x),

with

gitrack(x) = (xt − xreft )TWt(xt − xreft ),

gictrl(u) =
∑
j

ujTt W ij
u u

j
t ,

gicoll(x) = Wc(ac · d+ 1)−c,

where Wt,W
ij
u ,Wc are the weight matrices in each cost

respectively, d is the distance between two players, and ac, c
are the collision cost parameters that penalize for unsafe
distances. We let the risk tolerance of the two players θ1

and θ2 vary from −5.0 (risk-seeking) to +5.0 (risk-averse).
For each pair of risk tolerances (θ1, θ2), we conducted 150
simulations, in which an additive random noise on velocity
was added to both players dynamics during the simulations.

Fig. 2 shows the percentage of simulations where P2
yielded to P1 to pass first. We can observe from the heatmap
that as the risk-sensitivity value of one player increases, the
percentage of it yielding to the other player increases. More-
over, when the risk-sensitivity values of both player are the
same (diagonal grids in the heatmap), the yielding frequency
is everywhere close to 50% in this symmetric setup. We also
notice that, for the parameters pairs which have the same
difference (corresponds to the lines of grids parallel to the
diagonal), the yielding frequencies are similar. Intuitively,
this indicates that it is the relative risk sensitivity of agents
rather than the absolute risk sensitivity of agents which
influences the qualitative behavior during the interaction. In
Fig. 3, we show the average of minimum distance between
the two players. As the relative risk-sensitivity increases, the
min distance also increases.
Comparison with baselines

Fig. 3: Heatmap of minimum distance between two players.
The minimum distance increases as relative risk-sensitivity
increases.

Noise 0.03 0.05 0.07 0.09 0.11

RS game 1.03± 0.05 1.05± 0.05 1.06± 0.04 1.07± 0.04 1.09± 0.03
RN game 1.01± 0.05 1.01± 0.05 1.00± 0.05 1.01± 0.05 1.01± 0.05

TABLE I: Intersection scenario: Minimum distance between
the two agents with different Gaussian uncertainty covari-
ance.

1) Risk-Neutral Games (RN games): We first demonstrate
the importance of capturing risk when planning in the
presence of uncertainties. As opposed to risk-aware agents,
risk-neutral agents only optimize for the expected cost value,
and they are insensitive to the level of noise. We implemented
iterative linear quadratic Gaussian games as a risk-neutral
baseline by setting θ1 = θ2 = 0. Table I illustrates the
minimum distance between the two agents as we change the
level of uncertainties. For risk-sensitive agents (RS game),
we can see that the trajectories adapt to the noise level.
Moreover, the minimum distance increases as the uncertainty
increases. However, for the risk-neutral case, the control
input is indifferent to noise.

2) Risk-sensitivity in isolation: Another important aspect
of our method is the game-theoretic reasoning. By enabling
the autonomous agents to reason about their influence on
other agents, we can avoid overly-conservative behaviors
and achieve higher efficiency. We compare in Table. II the
time that it takes for P2 to pass the intersection using our
approach with that of a non game-theoretic setting, where
P1 is regarded as a non-reactive dynamic obstacle by P2
and vice versa. We can see that compared to this baseline,
our proposed approach consistently spends less time to pass
the intersection. The main reason for better efficiency of
our method is the fact that in the game-theoretic setting,
every agent leverages its knowledge of the other agent’s risk
tolerance. Due to space limits, we only show the result for
a fixed risk-sensitivity for P1 (risk neutral in Table. II). The
same conclusion can be drawn with other parameters.



P2 θ2 -5 -3 -1 1 3 5

game 3.21±0.26 3.27±0.29 3.31±0.32 3.40±0.33 3.44±0.33 3.46±0.32
no-game 3.87±0.52 3.97±0.49 3.90±0.50 3.99±0.52 3.94±0.54 3.92±0.52

TABLE II: Intersection scenario: Time to cross intersection
for P2 with different risk-sensitivity.

(a)

(b)

Fig. 4: Demonstration of the interactions between two risk-
aware agents during a merge maneuver. The two cars
start from a configuration where which one should yield
is ambiguous. The relative risk-sensitivity determines the
interaction outcome.

B. Merging

Consider a highway merging scenario with two cars. One
car starts from the onramp and wants to merge into the
highway with the presence of another car in the main lane
as shown in Fig. 4. In the cases where the two cars are close
in longitudinal direction and have similar speed, successfully
executing the merging maneuver is a very challenging task.
The challenge comes from the ambiguity that arises from
the uncertainty of the other car’s future trajectory and the
order of merging. Two possible interactions are illustrated
in Fig. 4a and Fig. 4b. We use this scenario to demonstrate
the effect of relative risk-sensitivity during such challenging
interactions.

We assume both cars follow the center line in their current
driving lanes and only consider the control of vehicle’s speed
to finish the merging maneuver. In other words, we assume
a steering controller will be executed separately for each car
to remain in their lanes. The state of our system includes 2D
position and the speed of the two cars.

x = [px1 , p
y
1, v1, p

x
2 , p

y
2, v2]

The control input of each player is acceleration u1 = a1,
u2 = a2. We use the same form of cost functions as in
Sec. V-A. The initial position and speed of the two players
are set so that they will collide if no control is applied.
Our results in minimum distance and yielding behavior
are reported in Fig. 5. As the risk tolerances change, we
can observe that the patterns of yield/pass behaviors and
minimum distance in the merging scenario are very similar
to the intersection scenario.
Comparison with baselines

Similar to the intersection scenario, two comparisons are
conducted. The comparison with risk-neutral games is shown

(a) Percentage of player 2 yielding to player 1.

(b) Minimum distance along the trajectory.

Fig. 5: Simulation results from merging scenario risk-
sensitive players.

Noise 0.03 0.05 0.07 0.09 0.11

RS game 5.13±0.03 5.25±0.05 5.44±0.04 5.67±0.04 5.70±0.03
RN game 5.02±0.09 5.04±0.06 5.00±0.11 5.03±0.06 5.02±0.08

TABLE III: Merge scenario: Minimum distance between the
two agents with different Gaussian uncertainty covariance.

in Table III while the comparison with non interactive risk-
sensitive agents is shown in Table IV.

C. Entering Roundabout with High Fidelity Simulator

We also evaluate our algorithm in the CARLA simulator
[30], a high fidelity open-source simulator for autonomous
driving. Fig. 6 shows the roundabout scenario we use. P1
starts in the roundabout and P2’s initial position is in an en-
tering lane. Our algorithm plans risk-sensitive trajectories for
the two vehicles at 3Hz. The closed-loop trajectory is passed
to a low-level controller which computes the throttle value to
achieve the desired acceleration. We set the risk sensitivity
parameter of each agent to be −10 (risk-seeking), 0, and
10 (risk-averse). For each parameter pair, we conducted 10
simulations and initial position for P2 was randomized. The
qualitative behavioral is shown in Fig. 7. For the roundabout
simulation, we report our comparison with the no-game
baseline. The time to finish entering roundabout for P2 is
shown in Table. V. It can be observed that in this case,
the risk-aware game-theoretic planner achieved much more



P2 θ2 -5 -3 -1 1 3 5

game 3.83±0.18 3.84±0.19 3.84±0.20 3.95±0.25 3.94±0.30 3.98±0.36
no-game 3.91±0.21 3.90±0.23 3.93±0.23 4.08±0.39 4.09±0.39 4.20±0.36

TABLE IV: Merge scenario: Time to finish merging maneu-
ver for P2 with different risk-sensitivity.

Fig. 6: A snapshot of CARLA roundabout environment. Red
car (bottom) is P1 and light pink car (right) is P2.

Fig. 7: Frequency of P2 yielding to P1 when entering the
roundabout.

efficient trajectories compared to the baseline.

VI. DISCUSSION

In this work, we presented a game-theoretic planning
approach for risk-aware agents. The formulation of risk-
sensitive dynamic games provides insights to the interac-
tion between players. Compared to risk-neutral games, our
framework introduces new parameters that lead to safer and
more intuitive behaviors. The game aspect is also captured
to address the mutual influence between agents. Compared
with non-game risk-sensitive control, our algorithm achieves
better efficiency without sacrificing safety. The proposed
iterative linear exponential quadratic method is used to solve
nonlinear dynamic systems with nonlinear costs in real-time.
The performance is demonstrated in several case studies,
including a cross-intersection, an onramp merging maneuver
and a roundabout entering in driving simulator.

Limitations and future work: While the introduced
framework is insightful for understanding the interaction
between agents and has the potential to increase interpretabil-
ity of autonomous agents’ motion, we have not addressed

P2 θ2 -10.0 0.0 10.0

game. 6.86±1.55 7.09±1.59 9.00±0.33
no-game 9.65±1.34 14.07±3.56 16.37±0.41

TABLE V: Roundabout scenario: Time to finish entering
roundabout for P2 with different risk-sensitivity values.

the problem of interaction with human players. To achieve
this goal, a human model is needed. For example, [31],
[32] uses inverse reinforcement learning to learn a reward
function. [33], [34] approaches the problem as a preference-
based learning problem. More recently, [35] estimates model
parameters online with a filtering algorithm. We would like
to pursue this direction for future work.
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APPENDIX I
RISK SENSITIVE GAME WITH LINEAR DYNAMICS AND

AFFINE-QUADRATIC COSTS

First, we give the following equation, which would be-
come useful when deriving the Riccati equations for LEQ
game. The results could be derived using basic calculus.

Let

J = Rθ(
1

2
(zTPz + sT z)) =

1

θ
logE exp(

θ

2
(zTPz + sT z)),

where z ∼ N (z̄, Z). Then, if Z−1 > θP

J = − 1

2θ
log det(I − θPZ)− 1

2θ
c, (21)

where

c = z̄TZ−1z̄ − (
θ

2
s+ Z−1z̄)T (Z−1 − θP )−1(

θ

2
s+ Z−1z̄).

J = ∞ if z−1 ≯ θP . This is called “neurotic breakdown”
when θ is too large.

Now, we consider a two-person discrete-time infinite dy-
namic game. The dynamics equation of the system is given as
in (6) and the risk sensitive objective function in (5). We use
dynamic programming and induction to derive the solution.
Suppose at time step t, the optimal cost-to-go for player i is

V it+1(xt+1) =
1

2
xTt+1Z

i
t+1xt+1 + ζiTt+1xt+1 + nit+1 (22)

Then, going backwards, at time t,

J it (xt) =
1

2
xTt Q

i
txt + liTt xt +

∑
j

1

2
ujTt Rijt u

j
t+

Rθi
(
V it+1(xt+1)

) (23)

where xt+1 ∼ N (Atxt + B1
t u

1
t + B2

t u
2
t ,Wt). Plug in (21,

22) and rearrange the above equation as a function of uit. To



minimize J it , the first-order and second-order condition for
ui∗t are

∂

∂uit
J it (xt)

∣∣∣∣
ui∗
t

=BiTt Z̃it+1Atxt +BiTt Z̃it+1

∑
j 6=i

Bjtu
j
t+

BiTt W−1
t (W−1

t − θiZit+1)−1ζit+1 = 0,
(24)

∂2

∂ui2t
J it (xt)

∣∣∣∣
ui∗
t

= R11
t +B1T

t Z̃1
t+1B

1
t > 0 (25)

Assume the form of the optimal feedback policy is given
as uit = −P itxt − αit. Then, by substitute the expression
into (24-25), and requiring them to be satisfied for all
xt, we obtain P it , αit as the solution using equations in
Lemma 4.1. Plugging in the optimal control policy, we arrive
at a quadratic form value function at time t. Thus, we finish
the induction.
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